XENO+ WIFI+BLE NANO CPU MODULE DATASHEET

Eoxys Systems

Revision History			
Version	Date	Description of change	
1.0	26-JAN-2022	Initial version	
1.1	12-MAR-2022	Corrected the pin mapping issue in the block diagram	
1.2	18-JUN-2022	Corrected the Bootloader information content.	

Table of Contents

1	Ove	verview3				
2	CPL	CPU Module Overview				
3	Pro	duct Features and Specifications	4			
4	Мо	dule Pinouts:	5			
	4.1	Left side 18 pins connector signals	5			
	4.2	Right side 18 pins connector signals	5			
	4.3	WiFi Control and Data signals	7			
5	SW	Functional Specifications	Э			
	5.1	Boot Application Functional Specifications	9			
	5.1	1 SW Version Command1	1			
	5.1	2 Setting WiFi Network Configuration1	1			
	5.1	3 Setting FOTA Server Configuration1	1			
	5.1.4 Setting PKCE Configuration11					
	5.1	5 Device Info Command12	2			
	5.2	User Application Functional Specifications12	2			
6	Module Layout and Dimensions13					
7	Mechanical Specifications14					

1 Overview

XENO+ WiFi+BLE Nano CPU Module is a solderable module and can be used as core CPU module of any new Battery powered IOT devices design of customers so that customers can focus only on adding sensors and Battery power circuits around this CPU module for building their new IOT devices in short time.

The module has smallest possible size with STM32L4 series ARM Cortex-M4, 1MB Flash, 352KB/128KB RAM, UART/SPI/I2C ports and GPIOs. This module has USB Type C based 5V Power input with serial debug port and Battery power input options. This module has 3 pin SWD pins for SW development and SW debug via STM32CubeIDE for Embedded SW development for the device by the users.

2 CPU Module Overview

The below table shows the brief overview of modules:

	XNO-W100S	XNO-W110S
Module Image		
Wireless Interface	WiFi 2.4 b/g/n and BLE5.0	WiFi 2.4 b/g/n and BLE5.0
Antenna	PCB Antenna	UFL Antenna
Sensor Interface	UART, SPI, I2C, ADC, DAC, PWM and	UART, SPI, I2C, ADC, DAC, PWM
	GPIOs	and GPIOs
Pins	18x18 Castellated Pins	18x18 Castellated Pins
Size in mm	60 x 35 mm	60 x 35 mm

3 Product Features and Specifications

The XENO+ module product features and specifications are listed below:

Table-1: The Product features and specifications

No.	Features	Specifications	
Electro –	Mechanical specification		
1	Boards Mounting	18x18 Castellated Pins	
2	Wired interface	1x USB Type C for 5V Power and Serial debug UART interface for debug messages and user inputs.	
3	Antenna	Chip antenna or uFL connector for external antenna supports 2.4G	
4	User SW programming	3 pin SWD pins for SW programming and debug via STM32CubeIDE	
5	Operating temperature	-40 ~ + 85 °C	
6	Operating humidity	95% or less	
7	Size	60x35 mm	
8	Weight	7 grams	
Power S	pecifications		
1	Module input voltage	5V from USB Type C connector * MOSFET based switch to auto cut-off battery power when USB 5V is present.	
2	Battery input voltage	 2.0V to 5V Battery power from non-rechargeable (or) rechargeable battery. The battery options are listed below: * Two 1.5V AA Type Alkaline/Drycell non-rechargeable batteries connected in series for non-restricted transport. * 3.6V AA type (Li-SOCI2) non-rechargeable battery for Industrial applications. * 4.2V LiFePO4 18650rechargeable battery. The recharging circuit to be added in carrier board by customer. 	
WiFi/BLE	Specifications		
1	WiFi	2.4GHz b/g/n * PCB Antenna or uFL connector for external Antenna	
2	BLE	BLE5.0 with 2Mbps PHY, LE Coded and Extended Advertising	
3	WiFi/BLE Data interface	UART based AT command interface (or) SPI based AT Command interface	
4	WiFi Active Mode Power	31mA (Rx Mode @ 1Mbps 802.11b), 178mA (Tx Mode @ 1Mbps 802.11b +17.5dBm)	
5	Wi-Fi Power Save Mode Power at 802.11b, 1Mbps (Clean Envi- ronment, @3.3V)	57uA (DTIM10)	
6	Deep Sleep Mode Power (@3.3V, Memory Retained)	11-19uA (RTC, memory retained, depends on amount of SRAM retained)	
7	Module Standby Power	55uA (STM32L4 in standby and WiFi module is in shutdown mode)	
8	WiFi Power Shutdown	WiFi Power can be shut down by MCU GPIO control signal	

9	Antenna	PCB Antenna (or) UFL Antenna Connector
CPU & Other Specifications		
1	CPU	STM32L4 series MCU with ARM Cortex-M4 at 80MHz
2	Flash Memory	1MB with Preassigned FOTA section
3	RAM	352KB/128KB SRAM
4	Sensor Interfaces	On Function-A pins: 1x SPI with two chip selects 2x UART 1x I2C 1x CAN 2x ADC 2x DAC 4x PWM 9x GPIOs
5	RTOS	FreeRTOS

4 Module Pinouts:

This module has 18x18 Castellated pins. The Left side 18 pins mapping and Right side 18 pins mapping are listed below. The MCU port pins can be assigned with 2 predefined module functions: Function-A and Function-B. The users can also map custom functions as per STM32L4 native GPIO functions on these pins.

4.1 Left side 18 pins connector signals

SNO	MCU Pins	Function A	Function B
1	PA4	DAC1_OUT1	GPIO_PA4
2	PA5	DAC1_OUT2	GPIO_PA5
3	PA6	ADC1_IN11	GPIO_PA6
4	PA7	ADC1_IN12	GPIO_PA7
5	PC4	GPIO_PC4	USART3_TX

6	PC5	GPIO_PC5	USART3_RX
7	РВО	TIM3_CH3	GPIO_PB0
8	PB1	TIM3_CH4	GPIO_PB1
9	PB2	GPIO_PB2	GPIO_PB2
10	PB12	CAN2_RX	GPIO_PB12
11	PB13	CAN2_TX	I2C2_SCL
12	PB14	GPIO_PB14	I2C2_SDA
13	PB15	GPIO_PB15	TIM15_CH2
14	PC6	TIM3_CH1	GPIO_PC6
15	PC7	TIM3_CH2	GPIO_PC7
16	NRST	Active LOW RESET signal to MCU. The Push button also asserts RESET signal to LOW.	
17	GND	GND pin of module.	
18	VDD_3V3	Regulated 3V3 supply output from module to other circuits of carrier board.	

4.2 Right side 18 pins connector signals

SNO	MCU Pins	Function A	Function B
1	PB9	I2C1_SDA	I2C1_SDA
2	PB8	I2C1_SCL	I2C1_SCL
3	PB7	SPI1_CS0	SPI1_CS0
4	PB6	SPI1_CS1	SPI1_CS1
5	PB5	SPI1_MOSI	SPI1_MOSI
6	PB4	SPI1_MISO	SPI1_MISO
7	PB3	SPI1_SCK	SPI1_SCK
8	PD2	UART5_RX	UART5_RX
9	PC12	UART5_TX	UART5_TX
10	PC11	UART4_RX	UART4_RX
11	PC10	UART4_TX	UART4_TX
12	PA15	GPIO_PA15	GPIO_PA15
13	PA12	GPIO_PA12	CAN1_TX
14	PA11	GPIO_PA11	CAN1_RX
15	PA8	GPIO_PA8	GPIO_PA8
16	GND	GND pin of module	
17	VBAT	Battery supply voltage input to module with 2.0V to 5V range. If Battery is	

		connected, the module works with this battery supply.
18	VBUS_5V	USB 5V supply voltage output from module to other circuits of carrier board. This is USB 5V supply. When USB cable is removed, the module will switch to Battery supply on-the-fly, if battery is connected.

4.3 WiFi Control and Data signals

WiFI Control Signals:

SNO	MCU Pins	Pin name	Description	Behaviour
1	PA1	WIFI_RST_N	GPIO Output pin. Used to reset the WiFi Module. Need to keep LOW for 2500ms to reset.	Acts as a RESET push button to re- set the module. Keep RESET sig- nal LOW for at least 2500ms
2	PA2	WIFI_PWREN_N	GPIO Output pin. Used to enable the power to the WiFi module. By default, the WiFi module is pow- ered down during the power-on time of module. The MCU SW need to power-up the module by making it LOW during its boot time	0 – ENABLE Power to WiFi 1 – SHUT DOWN Power to WiFi
3	PAO	WIFI2HOST_WAKEUP	GPIO Input pin. This signal will be interrupt signal to Host to wakeup from standby by WiFi module. This signal will be asserted with HI pulse to wakeup the Host. Default its kept at LOW.	Acts as Host STM Host Wake-up signal and is asserted by WiFi module. Default its kept at LOW. The HI pulse will be asserted to wakeup the STM host.
4	PA3	HOST2WIFI_WAKEUP	GPIO Output pin. This sig- nal will wake up the WiFi module from standby/sleep. Default its kept at LOW. HI pulse will wakeup the WiFi module.	Acts as WiFi module Wake-up sig- nal and is asserted by STM host Default its kept at LOW. The HI pulse will be asserted to wakeup the WiFi module.

The WiFi module can be put into following low-power modes to save power for Battery operated applications. These low-power modes can be enabled from host STM32 SW via AT commands.

- 1. Sleep/Suspend Puts system in suspend mode
- 2. Listen Interval Specifies how often the device shall wake up and listen for Beacons
- 3. **Traffic Timeout** Sets the time in millisecond that the device shall stay awake after incoming or outgoing traffic

- 4. **PS-Poll** Sends PS-Poll if a Beacon is missed
- 5. **Dynamic listen interval** Listen to each Beacon if there has been any traffic recently
- 6. **Receive Nap(Rx Nap)** When the device has received the beginning of the frame it is possible to check if the frame is intended for this device or not. If the frame is not intended for this device Rx Nap function will turn off the receiver
- 7. Only Broadcast Turn off the receiver for multicast frames
- 8. Transmit PS (Tx PS) Send outgoing frames without leaving wifi power save
- 9. Multicast don't care Turn off both multicast and broadcast frames

WiFi UART Data Signals:

The WiFi module supports either UART based AT interface or SPI based AT interface. The WiFi module binary decides which interface is active at the time module boot. If the WiFi module is flashed with UART AT interface binary, then below UART interface is used for AT command interface from STM MCU.

Note: When UART Data signals are used, the SPI data signals to be made as GPIO pins: PC2 & PC3 as GPIO inputs and PB10 & PC13 as GPIO outputs.

SNO	MCU Pins	Pin name	Description	Behaviour
1	PC0	WIFI_TX_MOSI	LPUART1_RX of STM MCU	Acts as LPUART1 receive pin STM MCU
2	PC1	WIFI_RX_MISO	LPUART1_TX of STM MCU	Acts as LPUART1 transmit pin of STM MCU
3	PC8	WIFI_RTS	unused	-
4	PC9	WIFI_CTS	unused	-
5	PC2	GPIO INPUT	To be configured as GPIO INPUT in STM MCU	Acts as GPIO input pin
6	PC3	GPIO INPUT	To be configured as GPIO INPUT in STM MCU	Acts as GPIO input pin
7	PB10	GPIO OUTPUT	To be configured as GPIO OUTPUT in STM MCU and set HI value.	Acts as GPIO output pin with de- fault HI value
8	PC13	GPIO OUTPUT	To be configured as GPIO OUTPUT in STM MCU and set HI value	Acts as GPIO output pin with de- fault HI value

WiFi SPI pins:

If the WiFi module is flashed with SPI AT interface binary, then below SPI interface is used for AT command interface from STM MCU.

When SPI Data signals are used, the UART data signals to be made as GPIO pins: PCO & PC1 as GPIO inputs and PC8 & PC9 as unassigned.

SNO		Pin name	Description	Behaviour
1	PB10	WIFI_SCK	SPI2_SCK of STM MCU.	Acts as a SPI2 clock signal.
2	PC3	WIFI_TX_MOSI	SPI2_MOSI of STM MCU.	Acts as a SPI2 master transmit sig- nal.
3	PC2	WIFI_RX_MISO	SPI2_MISO of STM MCU.	Acts as a SPI2 master receive signal.

4	PC13	WIFI_CS	SPI chip select pin.	Acts as SPI2 chip select signal.
5	PCO	GPIO INPUT	To be configures as GPIO INPUT In STM MCU	Acts as GPIO input pin
6	PC1	GPIO INPUT	To be configures as GPIO INPUT In STM MCU	Acts as GPIO input pin
7	PC8	Unassigned	unused	-
8	PC9	Unassigned	unused	-

5 SW Functional Specifications

5.1 Bootloader Application Functional Specifications

This module comes with Bootloader as a standalone Boot time application which is executed by default at the boot time. This Bootloader has capability to download following firmware from FOTA server:

- 1. STM32 Host firmware
- 2. WiFi Module firmware

The Bootloader helps in management of the devices above 2 firmware image versions and auto updates this device firmware with latest version Over-The-Air (OTA).

- 1. The Bootloader offers OTA (Over-The-Air) capability for the deployed IOT devices.
- 2. The Bootloader uses TCP/IP protocol over WiFi via Socket commands for communicating with FOTA Server (Called as TUNE APP Server). The connection management (connect, disconnect and re-connect) is handled by the FOTA Downloader.
- 3. The TUNE APP server allows embedded firmware updates for all deployed IOT devices in the field via WiFi interface. The TUNE APP server will be uploaded with new firmware files so that all deployed IOT devices firmware update is taken care. This TUNE APP server validates the devices credentials and informs device FOTA Downloader to initiate the Over-The-Air download of new device firmware.
- 4. The Bootloader downloads the new Firmware file from this FOTA server (TUNE APP server).

During the initial 3 to 5 seconds of power-on boot time, the Bootloader code checks all 3 firmware: a) STM32 Host firmware version and b) WiFi module firmware with FOTA server for any new updated version firmware available in the server. If it is available, it downloads the firmware and updates the same.

The module comes with device authentication mechanism part of Bootloader using PKCE (Proof Key for Code Exchange) based Device authentication. The PKCE is used to provide one more security layer to the authorization code flow of OAuth. The Bootloader initiates the Device Authorization Flow by requesting a set of verification codes from the authorization server by issuing an TCP/IP socket requests to the authorization server. The server can approve or deny the requests to authorise the device. After successful authentication of device, the server issues valid access token to the device. The access-token has a limited lifetime mentioned in minutes. When it expires the Bootloader can fetch a new refresh-token. This access-token can be read by user's main embedded

application.

At the end of Bootloader execution, the Bootloader launches the user's main embedded application.

SNO	Parameters	Description
1	Network configuration	WiFi b/g/n 2.4G
		Works in Station mode. Gets connected with Access
		Point (AP) and gets the IP address (IPv4) from AP.
2	Data protocol	TCP Sockets for FOTA Data downloading and Device
		registration.
3	WiFi Initialization	The initialization of WiFi is done as per device
		requirements.
		1. WiFi b/g/n
		2. IP: IPv4 only
		3. AP: <apn name="">, <password>. These fields will</password></apn>
		be configured via AT Commands through debug
		console by the users.
		4. Authentication: CHAP only
		5. Protocol: TCP Socket
		 FOTA Server setting: <server url="">, <port>. These fields will be configured via AT Commands through debug console by the users.</port></server>
		 PKCE setting: <pkce secret="">. This field will be configured via AT Commands through debug console by the users.</pkce>
4	Device Registration	The device gets registered with Server using Device ID and PKCE Secret. The WiFi MAC ID is used as Device ID. The server authenticates the devices and generates the access token and refresh token for the device.

Module User Configuration during Boot time

AT Commands supported during Boot time

The user inputs for device configuration are done via AT Commands through debug console. The user can press escape character during the boot time to initiate AT commands from debug console. The format of AT command is "AT%<cmd>=<args>" where <cmd> is the command name and <args> is the list of arguments. There are four types of AT Commands.

1Read command AT% <cmd>?This command returns currently set value of the parameters.2Write command AT%<cmd>=<arg1,arg2,>This command sets user defined parameter values.3Test command AT%<cmd>=?This command returns list of supported parameters</cmd></arg1,arg2,></cmd></cmd>	SNO	Туреѕ	Description
AT% <cmd>?currently set value of the parameters.2Write command AT%<cmd>=<arg1,arg2,>This command sets user defined parameter values.3Test command AT%<cmd>=?This command returns list of supported parameters</cmd></arg1,arg2,></cmd></cmd>	1	Read command	This command returns
parameters. 2 Write command AT% <cmd>=<arg1,arg2,> 3 Test command AT%<cmd>=? 4 This command returns list of supported parameters</cmd></arg1,arg2,></cmd>		AT% <cmd>?</cmd>	currently set value of the
2Write command AT% <cmd>=<arg1,arg2,>This command sets user defined parameter values.3Test command AT%<cmd>=?This command returns list of supported parameters</cmd></arg1,arg2,></cmd>			parameters.
AT% <cmd>=<arg1,arg2,>defined parameter values.3Test command AT%<cmd>=?This command returns list of supported parameters</cmd></arg1,arg2,></cmd>	2	Write command	This command sets user
3 Test command This command returns list AT% <cmd>=? of supported parameters</cmd>		AT% <cmd>=<arg1,arg2,></arg1,arg2,></cmd>	defined parameter values.
AT% <cmd>=? of supported parameters</cmd>	3	Test command	This command returns list
		AT% <cmd>=?</cmd>	of supported parameters

		and its possible values as help info to users.
4	Execution command	This command is non-
	AT% <cmd></cmd>	argument command and
		reads value of parameters.

5.1.1 SW Version Command

SW Version command	
AT%SWVER	Response:
Execution command	%SWVER-FIRMNAME: <device-sw></device-sw>
	%SWVER-NUM: <v10></v10>
	%SWVER-DATE: <dd-mon-yyyy></dd-mon-yyyy>
	ОК

5.1.2 Setting WiFi Network Configuration

Set WiFi Network Configuration	
AT%WIFINW= <apn< td=""><td>Response:</td></apn<>	Response:
Name>, <password></password>	ОК
Write command	
AT%WIFINW?	Response:
Read command	%WIFINW-AP-NAME: <access name="" point=""></access>
	%WIFINW-AP-PWD: <****Password>
	ОК

5.1.3 Setting FOTA Server Configuration

Setting FOTA Server Configuration		
AT%FOTASER= <server< td=""><td>Response:</td></server<>	Response:	
URL>, <port></port>	ОК	
Write command		
AT%WIFISER?	Response:	
Read command	%FOTASER-URL: <fota server="" url=""></fota>	
	%FOTASER-PORT: <port number=""></port>	
	ОК	

5.1.4 Setting PKCE Configuration

Setting PKCE Configuration		
AT%PKCE= <pkce secret=""></pkce>	Response:	
Write command	ОК	
AT%PKCE?	Response:	
Read command	%PKCE-SECRET: <pkce secret=""></pkce>	
	ОК	

5.1.5 Device Info Command

Device Info command	
AT%DEVINFO	Response:
Execution command	%DEVINFO-DEVNAME: <ip address=""></ip>
	%DEVINFO-MACID: <wifi id="" mac=""></wifi>
	%DEVINFO-IPADDR: <ip address=""></ip>
	ОК

5.2 User Application Functional Specifications

At the end of Bootloader execution, the Bootloader launches the user's main embedded application. This user application runs as main application which controls the sensors, interfaces, memory, and data transfer of the IOT device. The WiFi module configuration, sensor configuration, sensor data transfer via TCP Sockets/HTTP/MQTT APIs are maintained by the user embedded application.

The embedded device's memory map is defined as per below table so that memory map has 3 sections: 1) Bootloader section, 2) Main user application firmware and 3) Backup user application firmware sections.

Features	Description
Memory map of program flash of	1. BOOTLOADER_MEMORY
embedded device	Contains ISR_VECTOR, FIRMWARE, USER_CONFIG,
	ACCESS_TOKEN memory segments.
	2. MAIN_FIRMWARE_MEMORY
	Contains ISR_VECTOR and Main running app's MAIN_FIRMWARE, MAIN_FIRMWARE_SWVER info memory segments.
	3. BACKUP_FIRMWARE_MEMORY
	Contains ISR_VECTOR and Main running app's BACKUP_FIRMWARE, BACKUP_FIRMWARE_SWVER info memory segments

After successful authentication of device, the server issues valid access token to the device and stored in ACCESS_TOKEN memory section. This access-token can be read by User Main Application through App Development Lib APIs from this ACCESS_TOKEN memory section. Also main application firmware name, version number and release date in MAIN_FIRMWARE_SWVER info memory segment.

Features	Description
ACCESS_TOKEN memory segment: Access Token memory section	{ ACCESS_TOKEN: <access token=""> }</access>

MAIN_FIRMWARE_SWVER memory	{
memory section (User application	FIRM_NAME: <device-sw></device-sw>
firmware info)	SWVER: <v10></v10>
	DATE: <dd-mon-yyyy></dd-mon-yyyy>
	}

6 Module Layout and Dimensions

This module layout and dimensions are shown below.

Module Dimensions (in mm)

7 Mechanical Specifications

The XENO+ module is a single sided 55x35mm 1mm thick PCB with dual castellated/through-hole pins around the remaining edges. XENO+ module is designed to be usable as a surface mount module as well as being in Dual Inline Package (DIP) type format, with the 36 main user pins on a 2.54mm (0.1") pitch grid with 1mm holes.

Mechanical Specifications

Mechanical Specifications with no pins/vias to be present

Carrier Board PCB Footprint

